
DEMON
For TRS-80 Model I and Model III

Distributed '>y:

Mumford Micro Systems ·
Post Office Box 400

Summerland, California 9306 7
(805) 969-4557

DISTRIBUTED IN .. .'i1 ZEALAND
by .

MOLY;ME 'X Ltd.

-
P.O.Box 60152 'l'itirangi.
'l'el.817-4372

DISTRIBUTED IN AUSTRALIA
by

MICRO-80 PTY .LTD
P.O. BOX 213 GOODWOOD 5034
433 MORPHETT ST ADELAIDE 5000

••• IMPORTANT NOTICE •••

Mumford Micro Systems and its officers, employees, and programmers aball
have no liability or responsibility to its customers or any other person or
entity with respect to any liability, loss, or damage caused or a~leged to be
caused directly or indirectly by equipment or programs sold by Mumford Micro
Systems. This includes but is not limited to any interruption of aervice, loaa
of data, business or anticipatory profits, or consequential d8Jl)ag•s resulting
from the use or operation of such equipment or progl"ams.

••••••••••••••••••••••••••••
• THE DEMON DEBUGGER •
• •
• Table or Contents •
••••••••••••••••••••••••••••

Introduction •··•·••••••••••····••••••••••••••···••••••••••••····•··•••·•··•2

Part

Part

Part

Ground Rules •• 2
Command SU1D1Dary •••••••••••••••••••••••••••••••••• • ••••••••••••••••••• • 11
1
1. 1
1.2
2
2. 1

2.2

2. 4

2.5

2.6
2.7
3
3. 1
3.2

3.3
3.4

3.5

3.6

Loading
Loading
Loading
Mo,1itor

and Running DEMON
and Running DEMON From Tape ••••••···•••••••·····••······•5
and Running DEMON From Disk •••••••••••••·••••••••••••••••5
Commands •••••••••••••• -• •••••••••••••••••••••••••••••••••• 6

Monitor Utility Commands
<A>, <D>, <SHIFT D>, <H>, <H>, <Q> ••••••••••••••••••••••••••••••• 6
Monitor Block Comands

•••••••••••••••••••••••••••••••••. • •••••• 10
'

, <F>, (SHIFT F>, <Z>
Monitor Input/Output Commands
<E>, <L>, <W> •••12
Monitor Relocation Commands
<~>, <P> •• 18
:Monitor Jump To Stepper Commands
<S>, <C> ••20
Monitor Jump Command <J> •·•••••••• • ••···•••••···•····••••••··•· •20
Monitor Line Print Command <SHIFT P> ••• •• •••••••••••••••••••••••20
Stepper Commands
Introduction ••. · ••.•••..........••.....••.........•....••..•.....• 22
Stepper Utility Commands
<A>, <H>, <M>, <Q> ••25
Stepper Command <D> ••••••······•••••••••••···••••····•··•••••···26
Break Setting Commands
<E>, <G>, <I>, <N> ·••••••••••••••••••••••••••• • •••••••••••••••••27
Clearing and Listing Commands
<C>, <L>, <O> ••••••••••••··•• • •••••••••·•••••••••••• • •••••••••• • 31
Stepper Display Commands
<S>, <T> ••••••••••••••••···•••••••••••••••••••••••••••••••••••••31
Continuous Stepping Commands
<R>, , <V> •••·••• • ••• • ••••• • ••••••••••••••••·•••••• • •••••••••32

3.8 Register Edit Commands
<F>, <Z> •••••••• • •••33

3.9 Jump Commands
<J>, <K>, <U> ••••••••••••••···••••••••••••·•••••••••••••••••••••34

3. 1 O Line Printer Commands
<P>, <SHIFT RIGHT ARROW>, <SHIFT P> •••••••••••••••••••••••••••••35

3.11 Tracing with , <U>t and a line printer •••••·•••••••••••••••••35
Appendix A Technical Information ••••·····••••••••··•····••••···•···•••••36
Appendix B - Error Messages •••••••••••••• • ••··•·•••••••••••·•••··••••• • •••38
Appendix C - Sample Program ·•···•····•··· • •••••••···••·••••••••·••···••••~•39
Command Index ,:., •• • ••••••••••••••• liO

Demon - Page 1

INTRODUCTION
. . -1

Tti.e' _DEMON (tor DEbugging HONitor) is a relocating machine language.fo!,litor and
stepper for the TRS-80 Model I and Model III. It supports input lnd output
commands for both tape and disk systems, and will also output to a line
printer. It will step through your program or run in slow motion·at -aeveral
speeds, displaying disassembled instructions and register and flag obntents on
th~'J,ottom two lines of the CRT screen, without interfering with your program's
use ·. of those lines.

·. · Programs may be rapidly debugged and/or their operation traced_ With CALLS
and RST's executed at full speed as needed. High speed stepping can stop at
each branching instruction, or at a preset address, or if a number in a given
range is referenced, or by counting steps. Breakpoints set in RAM are removed
when they are used, but may be reset automatically. DEMON will run in systems
with as little as 16K of RAM. The following features also merit mention:

1) Numbers may be entered in decimal or hexadecimal.
2) Full screen memory display allows rapid editing in ASCII or hexadecimal.
3) You can disassemble at an independent address while single stepping.
~) Disk input and output 1s allowed down to 5200H, or even lower if your

system will allow it.
5) When saving memory on disk or tape, up to 8 separate blocks can be

combined in a single recording.
6) A labelling disassembler is included with output in EDTASM source format.
7) DEMON will relocate both itself and other programs.

GROUND RULES ~-.
To begin with, let's define some of the general conditions and conventions

that will be observed in the following instructions and in DEMON itself. There
are two major modes in DEMON: the K:>NITOR mode and the STEP mode. Each of these
primary modes has a variety of commands avail able to it (see COMMAND SUMMARY).
For the purposes of these instructions , the expression "command level" will
refer to the state DEMON is in when it 9an accept new commands in either of
these two modes. The "command level" for the MONITOR MODE will be indicated by
the prompt "CMD?" appearing in the upper left corner of the screen. The
"command level" of the STEP MODE will be indicated by the prompt "?" or "I" in
the lower left corner of the screen.

There are a couple of other expressions that will be used frequently. One
of these is "target program". What we will mean by this is the program being
debugged or examined by DEMON. Another word that will be used a lot is "step" .
For our purposes, a "step" will be considered a single machine language
instruction in the target program, or the execution of this instruction.

Abbrey1at1ons
There will also be some abbreviations used in these instructions. Many

times, you will be told to type a key on your computer. The key you are to
press will be bracketed by "greater-than" and "less-than" characters. In these
cases, you should only press the key that is between these two characters. Some
typical examples are:

<Y> -Press the "Y" key if the answer is "Yes".
<N> -Press the "N" key if the answer is •No".

<ENTER> -Press the "ENTER" key~
<SHIFT UP ARROW> -Hold the SHIFT key, and press the UP ARROW key.

Demon - Page 2

Jly.m_ber Entry:
When entering numbers, such as. addresses, you may enter either decimal c?

h~:t.:adecimal values. To enter a hexade~imal number, type from 1 to -4 hexadec.1..mal
digits (0-9, A-F), and press <ENTER>. To enter a decimal number, type from 1 tQ
5 decimal digits (0-9), and press the decimal point (or period} inst~ad ?f
<ENTER>.

Illegal entries will erase the complete number and you will have to ~tart
over. Some illegal entries are addresses greater than 65535 decimal or FFFF
hexadecimal, bytes greater than 255 decimal or FF hexadecimal, and decir.ial
numbers with hexadecimal digits (A-F).

Before pressing <ENTER> or<.>, <LEFT ARROW> will backspace over any
characters you might want to change. If <ENTER> or<.> is pressed when DEMON
expects a numeric entry, but you haven't entered any digits, a default value or
0 will be entered (the •o• doesn't display on the screen). One exception to
this is the default value for the RUN address, which is FFFF (see STEPPER
command R).

When DEMON displays ·a number, most hexadecimal values will display 2 or 4
digits. Decimal numbers will end in"•" except for the step count at bottom
right corner of the stepper display, which will not have the decimal point.

The <BREAK> Key
The <BREAK> key ia recognized at almost every point in DEMON as an escape

to the command level or the mode you are in. <SHIFT BREAK> will return to the
comand level of the MONITOR MODE from the STEP MODE. Most commands may be
aborted by hitting <BREAK>. Disk and tape operations, as well as line printing,
will require that you hold the <BREAK> key down until the operation terminates.
When writing to disk, <BREAK> will terminate writing but not KILL the file. In
other words, you will end up with a partially written file on your disk.

Demon - Page 3

COMMAND SUMMARY

DEMON has two main parts, the MONITOR, and the STEPPER. Each has its own
set of commands and distinctive command prompts. The following list is a
summary of these commands. A thorough description of each one will follow.

MONITOR COMMANDS
(Prompt= "CMD?W)

A ARITHMETIC
B BLOCK HOVE
C CONTINUE STEPPING
D DISASSEMBLE TO SCREEN
<SHIFT D>: D WITH LINE PRINT
E DISASSEMBLE TO EDTASM SOURCE
F FIND BYTES
<SHIFT F>: F WITH LINE PRINT

H NUMBER BASE CONVERSION

J JUMP TO MEMORY

L LOAD FROM DISK OR TAPE
M MEMORY EDIT

P PROGRAM RELOCATION
<SHIFT P>: LINE PRINT CONTROL
Q RETURN TO MEMORY EDIT
R RELOCATE DEMON
S STEPPER MODE

W WRITE TO DISK OR TAPE
Z ZERO BLOCK OF MEMORY

<BREAK> RETURNS TO COMMAND LEVEL

STEPPER COMMANDS
(Prompt="?" or •t•)

A ARITHMETIC
B BRANCH STEP
C CLEAR BREAKS
D DISASSEMBLE TO SCREEN

E EXT~RNAL BREAK
F FLAG REGISTER EDIT

G BREAK ON NUMBER OF STEPS
H NUMBER BASE CONVERSION
I INTERNAL BREAK
J JUMP TO MEMORY
K RESET E BREAK AND JUMP
L LIST BREAKPOINTS
M MEMORY EDIT
N BREAK ON NUMBERS IN A RANGE
0 RESET STEP COUNTER TO ONE
P ENABLE LINE PRINTER
<SHIFT P>: LINE PRINT CONTROL
Q RETURN TO MEMORY EDIT
R RUN BY CONTINUOUS STEPPING
S RESTORE STEPPER DISPLAY
T RESTORE TARGET DISPLAY
U JUMP UNDER CALL OR RST
V VARY CONTINUOUS STEP SPEED

z DISPLAY OR ALTER zao REGISTERS

<BREAK> RETURNS TO COMMAND LEVEL
<SHIFT BREAK> RETURNS TO MONITOR MODE
<SHIFT RIGHT ARROW>: LINE PRINT
<ENTER> TAKES ONE STEP

Demon - Page 4

PART]; LOADING AND RUNNING DEMON

l,l LOADING AND RUNNING DEMON FROM TAPE
DEMON is a machine language program supplied on a cassette recorded at 500

baud, so MODEL III TRS-80 users should begin by hitting RESET (hold down,.
<BREAK> if you have disks) and responding to "Cass?" by pressing <L>. MODEL I .
users may just hit RESET. Both will find "MEMORY SIZE?" or "HEM SIZE?"
displayed. Press <ENTER> to get to the BASIC prompt "READY". Next, type SYSTEM,
press <ENTER>, and type the file name DEMON. Press PLAY on the tape recorder,.
and press <ENTER> on the computer. Asterisks should flash in the upper right
corner of the screen while the tape is loading, and then the SYSTEM prompt"*?"
will return. If the asterisks do not appear, or a C (for checksum error) or D
{for data error) appear, check your connections to the tape recorder and the
volume level and start over. Once you have gotten a successful load, press <I>
and <ENTER> to begin running DEMON.

1 • 2 LOADING At:D RUNNING DEMON FROM DISK
If you received DEMON on disk, you will find that the disk is formatted for

the current version of TRSDOS for your machine. If you have two drives, you may
put this disk in drive 1 and your TRSDOS compatible operating system in drive
O. To load and execute DEMON from "DOS READY", just type DEMON and hit <ENTER>.

If you have only one drive, you will need to use a different procedure. The
DEMON disk has a special structure that will allow you to copy the program on
it to a TRSDOS system disk of your own. To do this, use the following step by ·
step proc~dure:

1) Put a current TRSDOS system disk in drive O and hit RESET.
2) When the DOS READY prompt is displayed, remove the TRSDOS disk, insert the

DEMON disk, and hit RESET again.
3) The disk should "boot up" with our sign on message. This message will tell

you which version of TRSDOS it is designed to work with. If the system disk
you are using is not the same type, put the correct system disk in drive O
and go back to step 1.

~) The program name DEMON/CMD will also be displayed and you will be asked to
put your system disk back in drive O.

5) Put your system disk in drive O and enter W to write the program onto your
own disk.

6) When the program has been safely stored on your own disk, hit RESET to
re-boot the system. You may then run DEMON from DOS READY by just typing the
file name DEMON and hitting <ENTER>.

When the DEMON begins execution, the screen will clear and display the
title page with "DEMON" in large letters. Press any key. The screen will clear
again and display the monitor command level prompt "CMD?".

The re-entry point to DEMON is always the first address it uses. If you
relocate DEMON, this address will change. The re-entry point to the program as
distributed is 2~320 decimal or 5FOO hex (see Section 2.~, <R>).

Demon - Page 5

PART 2; THE MONITOR COMMANDS

As stated earlier, there are two primary modes in DEMON. These are the MONITOR
mode and the STEPPER mode. When you first enter DEMON, it "comes up" in the
monitor mode. In this mode, the .screen is clear except for the monitor mode
prompt "CMD?", which will be at the upper left corner of the display. DEMON is
now ready to respond to one of its commands. Host of the commands in DEMON
require a single key, though some also require the shift key. When you give
DEMON a command by pressing one of these keys, nothing will happen until you
release the key. A prompt will then indicate what to do next.

2,1 MONITOR UTILITY COMMANDS <A>, <H>, <M>, <Q>, <D>, <SHIFT D>

<A> - Hexadecimal arithmetic {X+X, x-x, x-x>
This command is used to perform simple arithmetic on two numbers. The

numbers may be decimal or hexadecimal, but the answers are always given in
hexadecimal (monitor command <H> can be used to get the decimal equivalents of
the hex answers). After pressing <A>, the message "X = n will appear. You may
now enter any decimal or hexadecimal value for X, following the conventions
defined under GROUND RULES. When Xis entered, the message ny = fl will be
displayed and you can likewise enter a decimal or' hex value for Y. After X and
Y are both entered, the results of the arithmetic will be immediately
displayed. You may then hit <SHIFT RIGHT ARROW> to print this line of
information on the line printer. To return to the command level without line
printing, just hit <BREAK>.

These are two byte calculations, so if the sum is greater than FFFF, the
overflow or carry to a non-existent third byte is discarded. For example, 8888
hex plus 7778 hex equals 0000. .

In the following examples, the text that is not underlined is supplied by
DEMON. The underlined characters are your responses.

EXAMPLE 1: From the command level, press <A> and enter "234fl and fl345D". Note
that these are both hex numbers because they are followed by the <ENTER> key
instead of a decimal point. The resulting display will be:

X = m Y: .3.!i5.Q. X + Y = 3691 X - Y = CDD7 Y - X = 3229

You can now return to the command level by pressing <BREAK>, or send this line
to your line printer by pressing <SHIFT RIGHT ARROW>.

EXAMPLE 2: Press <A> and try X = "23 45. fl and Y = "4567 8. ". Note that these are
both decimal entries because they are entered with a decimal point instead of
the <ENTER> key. The complete display will be:

X = 2345, Y = ~5678, X + Y: BB97 X - Y = 56BB Y - X = A945

Note that the sum and differences are always hexadecimal, regardless of the
number types that were entered for X and Y.

Demon - Page 6

<H> - · -Hexadecimal to decimal and decimal to hexadecimal conversion
This command is used to convert numbers from base 1 O to base 16 or

vice-ver'sa. After typing the command <H>, you will see the following display:
"ENTER-' #~ "• You may now enter any number according to the conventions defined
under GJWUND RULES. If you enter a qecimal number (a.number ending with a
decimai point), you will be shown tlle hexadecimal~ value of this number. If the
number you enter is hexadecimal (a number ending wlth the <ENTER> key) you will
be given the decimal value of this number, After the oonversion has taken
place, you may use <SHIFT RIGHT ARROW>'to have the results' printed on your line
printer. Otherwise, press <BREAK> to return to the· .command level.

In the following examples, the text that is not underlined is supplied by
DEMON. The underlined characters are your responses •

ENTER#:~ =
ENTER I: 44544, =

.
44544. (A hex number is entered, a decimal value is returned)

AEOO (A decimal number is entered, a hex value is returned)

.<M> - Full screen memory display and edit
The memory edit function in DEMON is very .fast and flexible. It will

display 256 bytes at a time (16 bytes by 16 line~) in ASCII, hexadecimal, and
graphics modes, After giving the <M> command, you will see the following
prompt: "M ADDRESS: "• You may specify any valid address according to the
conventions described under GROUND RULES. After entering the address you will
see one page (256 bytes) of memory displayed in either hexadecimal or ASCII
format,' depending on which mode was last used. At the left edge of the screen
will be the addresses of the first byte of each row of values. There will be a
blinking cursor over the first character of the first byte in the top row.
Finally, there will be a hexadecimal number in parenthesis at the top right of
the screen. The blinking cursor indicates the position at which editing may be
done, and the number in parenthesis is the exact address of this location.
While you are in the memory mode, there are several special commands available:

THE ARROW KEYS - These keys moye the blinking cur~r up, down, right, and left.
They will repeat automatically if held down. If the use of these keys
causes the cursor to reach the top or bottom of the screen, the display

,will scroll to accomodate movement in the desired direction. The cursor's
exa.ct address will always be displayed at the extreme right of the screen,
so there is no need to count columns. As stated earlier, the position of
this blinking cursor is the location at which changes in memory can be
made,

~SHIFT UP ARROW> and <SHIFT DOWN ARROW> - These commands cause the ar;a of
memory being displayed to move backward or forward by one page (256 bytes).

<SHIFT RIGHT ARROW> - This command is used to send the memory display to your
line printer. After typing <SHIFT RIGHT ARROW>, the screen will clear and
you will be asked for a "LAST ADDRESS: "· After entering this address, the
memory display starting at the last cursor position and ending with your
"LAST ADDRESS" will be sent to the line printer, The memory display on the
printer will contain hexadecimal bytes and an ASCII representation of those
bytes on each line. The hex bytes will be grouped in pairs and the ASCII
characters will be bracketed in parentheses. Because the screen is cleared
before you are asked for a LAST ADDRESS, be sure to make a mental note of
this address before typing <SHIFT RIGHT ARROW>, <BREAK> may be used to
abort printing early.

Demon - Page 7

<CLEAR> - This colDI!land is used to switch between hexadecimal display and ASCII
display. The <CLEAR> key will "togglew the mode: if you are in hex mode, it
will change the display to ASCII mode; if you are in ASCII mode, it will
change to hex mode. In the ASCII mode, bytes with values greater than 7F
hex will be displayed as periods. When line printing in this mode, values
less than 20 hex are also changed to print as periods. (This change is also
available as an option for screen display, see TECHNICAL INFORMATION.)

<SHIFT LEFT AR~OW> - Thia command is used to iwitch back and forth between
regular ASCII mode and the GRAPHICS/ASCII mode. The only difference between
these two modes is the upper limit where bytes are changed to print as
periods. In the regular ASCII mode the limit is 80 hex. In t~e
GRAPHICS/ASCII mode it becomes CO hex. This will allow screen graphics
characters to be displayed. When line printing with <SHIFT RIGHT ARROW> in
the GRAPHICS/ASCII mode, you will automatically be switched back to regular
ASCII mode.

While you are in the memory .mode, you may at any time change a value in RAM
that is displayed on the screen. To edit in the hexadecimal mode, type two
hexadecimal digits for each byte. The blinking cursor will advance one position
after each character. You will notice that; two digits are required for each
byte, and after you have entered one of them, you must enter another valid
digit before you will be able to use the arrow keys again.

To edit in the ASCII mode, just type characters. In this mode only one
character is required for each byte. While it may appear as though the <ENTER>
key leaves a letter "M" in memory, it is actually entering a OD hex which is
the value of a carriage return. The appearance of the letter Mis a peculiarity
of the TRS-80. Some TRS-80s, however, will show some other character in place
of an "M".

Note that the display shows the actual result in memory. If you try editing
at ROM addresses, there will be no change either in memory or on the screen.
The <H> command will, however, change any byte within DEMON itself but -unless
you know exactly what you're doing, don't do it (see TECHNICAL INFORMATION). To
return to the command level from this fwiction, hit <BREAK>.

<O> - Ouick return to memory edit
This command may be used as a quick return to the last memory edit display.

After typing <Q>, you will re-enter the memory edit mode. The page of memory
displayed will be the same as was last displayed in the <M> mode, and the
cursor will be in the upper left corner.

<D> - Disassemble
This command will display disassembled Z-80 instructions on the video

screen, starting at a specified address. After pressing <D>, the message "D
ADDRF.SS: "will appear. You may now enter any valid address in hex or decimal,
and 16 lines of disassembled instructions will be immediately displayed on the
screen. Now that you are in the disassembly mode, there are three special
commands available • . <UP ARROW> will cause continuous disassembly, with the
screen scrolling as necessary. <ENTER> will advance the display by 16 lines
{one screen full). <SPACE BAR> will advance the disassembly by one line only.

Demon - Page 8

Each line displays the hexadecimal address, the object codes that form the
instruction, and the disassembled instruction in Zilog mnemonics. Undocumented
or illegal machine language code combinations (such as the two hexadecimal
bytes "DD DD") lead to the d,isplay of the address, from 2 to 4 object codes
(starting at the specified address and ending at the first bad code), and the
message "BAD CODE". The address is then incremented by 1 and disassembly
continues with the next byte.

EXAMPLE OF A BAD CODE: With DEMON in its original location, place the codes
"DD DD 21 00 00" at memory address 9500 (hex) by using the monitor command <M>.
Return to the command level and attempt to disassemble these codes by pressing
<D> and entering the address 9500. The display just before pressing <ENTER>
will be:

D ADDRESS: .95.0.Q.

The display after pressing <EHTER> will be:

9500 DDDD BAD CODE
9501 DD210000 LD IX,0000
(And 14 more disassembled instructions below this.)

EXAMPLE WITH NORMAL CODES (The first few codes of DEMON):
From the command level, press <D> and type 5FOO <ENTER>. The top lines of the
display will be:

5FOO C3A670
5F03 EDB8
5F05 FDE9
5F07 1 A
5F08 13

JP 70AA
LDDH
JP
LD
INC

(IY)
A, (DE)
DE

<SHIFT P> - Disassemble to line printer
This is the monitor command for disassembly to the line printer. DEMON uses

the standard "device control block" for printer output, so if you have a
non-standard printer and a special dri~er for it, it will be automatically
supported (see TECHNICAL INFORMATION). After entering <SHIFT D> the message
"FIRST ADDRESS:" will be displayed. You may enter any valid hex or decimal
address. You will then be prompted for a "LAST ADDRESS:"• To abort this
function, press <BREAK> instead of entering an address. Otherwise, as soon as
you enter the address, disassembly will begin and continue until the "LAST
ADDRESS" is reached or exceeded.

Each disassembled instruction will be displayed briefly on the bottom line
of the screen as it goes to the printer. To stop printing at any time, press
and hold <BREAK> until the printer stops. Note that if your printer has a large
buffer in it, it may take some time for it to stop even though DEMON has
stopped sending it code.

The message "BAD LIMITS" will appear and there will be no printing if the
range of addresses specified overlaps the area of memory used by DEMON itself.
See the stepper command <D> for another way to disassemble to the printer.

Demon - Page 9

2,2 · MONITOR BLOCK COMMANDS , <F>. <SHIFT F>, <Z>

 - Block move
This command w1ll move the data 1n a block of memory from an existing

location to any new location in RAM. This command will not function on blocks
that overlap DEMON either before or after the indicated move. It will, however,
function on blocks that overlap each other in either direction. DEMON is smart
enough to prevent the move itself from writing over its own data. ·

After entering the command, you will be asked for a na FIRST ADDRESS:n.
This is the starting location of the data you want to move. After entering
either a decimal or hex address, you will be a3ked for a "LAST ADDRESS:"- This
is the ending location of the data you wish to move. After entering this
address, you will be asked for a •NEW FIRST ADDRESS:". This is the start of the
area in RAM you want to move the data to. After entering this address, the move
will be made (if allowed) and you will return to the command level.

The examples which follow assume DEMON is in its original location. Start
from the command level each time, and press . The text which is not
underlined is supplied by DEMON. The characters that are underlined are your
responses.

EXAMPLE 1:
B FIRST ADDRESS: .!10.Wl LAST ADDRESS: li.2.0.Q.
NEW FIRST ADDRESS: .6.Q.O.Q.
BAD LIMITS

In this case, the data would overlap DEMON after the proposed move, so no move
is made and the message "BAD LIMITS" is displayed. Press <BREAK> to return to
the command level.

EXAMPLE 2:
B FIRST ADDRESS: .9Q.Q.Q. LAST ADDRESS: .9.Q.Q.[
NEW FIRST ADDRESS: .9Q.Q.3.

This is the display just before hitting <ENTER> after "9003" has been typed.
The move will be made as soon as <ENTER> is pressed, and you will return to the
command level. As shown here, the new block may overlap the old block in either
direction. Assume the contents of memory at address 9000 hex before this move
had been:

01 02 03 04 05 06 07 08 09 QA OB oc OD OE OF oo 00 00

After the proposed move, the contents would be:

01 02 03 01 02 03 04 -05 06 07 08 09 OA QB oc op OE OF

<F> - Find a set or bytes
This command finds all oocurances of a set of consecutive bytes in a

specified range. After typing <F> from the command level, you will be asked for
an •F FIRST ADDRESS:•. This is the start of the block of memory you want to
search through. You will then be asked for a "LAST ADDRESS:". This is the end
of the block of memory you want to search through. Finally, you will be given
the prompt "FIND:", which asks for the bytes you want to search for. You may
enter from 1 to 10 bytes, though 3 or 4 is usually enough. To enter the first

Demon - Page 1 0 .

byte, type either a decimal or hex value as defined under GROUND RULES. After
ending this number with either a period (for decimal numbers) or <ENTER> (for
hex numbers), a question mark will be displayed. DEMON is now waiting for the
next byte you want to search for.

If you enter another number, the process will be repeated. If you type
<LEFT ARROW>, all numbers entered so far will be erased. If you type <RIGHT
ARROW>, the search wili begin and the locations of all occurances of the
defined string of bytes in the defined range will be displayed. These addresses
will be displayed 10 at a time, after which the display will stop and wait for
you to hit <RIGHT ARROW> again to get the next 10 locations. When the search is
complete, the prompt "FIND:" will appear again so a new set of bytes may be
entered for a search between the same addresse~. To change limits or terminate
the search, press <BREAK>. If you specify a range that overlaps the area of
memory used by DEMON, the message "BAD LIMITS" will be displayed. If nothing is
found, the ">" sign will be displayed on a blank line, and you will be given
the "FIND:" prompt again.

The following example shows the result of a search of the top of video RAM
(the top line of the video screen, in fact), first for three consecutive
spaces, and then for a space and "A". The text which is not underlined is
supplied bY, DEMON, the underlined characters are your responses:

F FIRST ADDRESS: .3.C.QD. LAST ADDRESS: ~
FIND: Z.Q. Z.Q. 2.Q ? <RIGHT ARROW>
3C15 3C2A 3C2B 3c2c 3C2D 3C2E 3C2F 3C30 3c31 3C32 <RIGHT ARROW>
3c33 3C34 3C35 3C36 3c37 3C38 3c39 3C3A 3C3B 3c3c <RIGHT ARROW>
3C3D
FIND: 2.0. il? <RIGHT ARROW>
3C07 3C1C
FIND: <BREAK>

<SHIFT F> - search and print results on the line Printer
This command functions exactly like the <F> command, except that all

entries and the results of the search are sent to the line printer instead of
the video screen, and there is no pause after every 10 matches.

<Z> ~ Zero a block of memory. or set to a byte
This command will load the contents of every memory location between the
defined limits with a specific value. After typing <Z> from the command level,
you will be asked for a "Z FIRST ADDRESS:". Enter the decimal or hex address of
the beginning of the block of memory you want to modify. You will then be asked
for a "LAST ADDRESS:". Enter the ending address of the block of memory you want
to modify. (If you enter a range that overlaps the area of memory used by
DEMON, the error message "BAD LIMITS" will be given and you will have to hit
<BREAK> to return to the command level.) Finally, you will be asked for a
"BYTE:". This is the value you want to give every memory location within the
defined range. If you hit <EHTER> without specifying a value, zero will be used
as the default. After the block of memory has been filled with the defined
value, you will return to the command level.

Demon - Page 11

In the following example, the text that is not underlined is supplied by
DEMON. The characters that are underlined are your responses:

Z FIRST ADDRESS: .95..0.Q. LAST AI>DRESS: .910..0. BYTE: .8.8.

In this example, every byte between and including 9500 hex and 9700 hex will be
loaded with the value 88 hex, and you will immediately return to the command
level.

2,3 MONITOR INPUT/OUTPUT COMMANPS <L>, <W>, <E>

All of the following input and output functions will require a name to
specify which file you will be reading or writing. Certain conventions must be
observed in the use of these names. All tape operations will require a "FILE
NAME". This FILE NAME must start with a letter, and have from Oto 5
alphanumeric characters following the letter. Examples of valid FILE NAMEs for
tape operations are "TEST", na1oon, and nABCDEF". Punctuation is not allowed.

Disk operations will require a "FILESPEC" (short for "file specification").
The FILESPEC for disk I/0 (input/output) must meet the requirements given in
your Disk Operating System Owner's Manual. Typically, this will mean a name of
up to 8 characters, followed by an optional slash· and three more characters. A
FILE.SPEC may also include a drive specification by typing a colon followed by a
drive number. Examples of valid FILESPECs f'or disk operations are "TEST",
"G100", "DATA/CHD", and "ABCDEFGH/CIM:2".

<L> - Load memory from disk or tape
This command is used to load memory with a "program" which has previously

been stored on tape or disk. This "program" does not have to be a real program.
It can be any data that is stored on tape or disk, as long as it is stored in
the. proper format. If it is a tape file, it must be a "SYSTEM" recording of the
type that the BASIC "SYSTEM" command can load. If it is a disk file, it must be
in the format of a command file that can be loaded with the DOS command "LOAD"
or executed as a program by simply typing its name from DOS READY. The DEMON
command <W> will create files in this format, so anything written by DEMON can
later .be loaded by DEMON.

It should be mentioned that there is not a tape version of DEMON that is
different from the disk version of DEMON. There is but one DEMON. If you don't
have disk drives, therefore, you will not be able to use the disk commands. If
in fact you try to use a disk command in a tape-based computer, you will
probably crash. For this reason tape users should avoid disk commands. If you
accidentally enter a disk command, you may abort it with the <BREAK> key before
any damage is done. While this may be bothersome to some users, it saves you
the trouble and expense of having to buy another version of DEMON when and if
you finally get a disk drive. We sincerely hope this causes no inconvenience.

Loading from disk
When you first type <L> from the command level, DEMON will respond with

"LOAD FROM DISK OR TAPE (D/T)?" Press <D> for disk. You will then be asked for
a "FILESPEC?". You may enter any valid FILESPEC (as defined above or in your
DOS manual) and hit <ENTER>. You will then be prompted to "READY DISK", which
means to be sure the right disk is in the right drive. When this condition is
met, hit <ENTER> again. The drives will start up and your operating. system will

Demon - Page 12

search for the file in question. When it finds it, it will be loaded into
memory and you will see an asterisk blinking in the upper right corner or the
screen. When the load is complete you will be given a message that tells you
the FIRST ADDRF.SS, the LAST ADDRF.SS, and the ENTRY ADDRESS o.f the file just
loaded. Make a note of these hexadecimal numbers if needed, and hit <BREAK> to
return to the command level.

If a disk error occurs during loading, it will be reported on the video
screen. Diak error messages are supplied by your operating system. If you try
to load a program that occupies the same memory area DEMON does, the error
message "BAD ADDRF.SS" will be displayed along with the address of the conflict.

• If you try to load a file that uses memory below the limit allowed by DEMON,
the same error message will be given. This limit, however, may be changed (see
TECHNICAL INFORMATION). See also ERROR MESSAGES.

The following example demonstrates the use of this command. It will load
DEMON itself. Because you can't load DEMON on top of itself, the version of
DEMON used to load DEMON from disk must bave previously been relocated to upper
112emory (see <R> command). In the following example, the text that. is not
underlined is supplied by DEMON. The underlined characters are your responses.
From the command level, type the letter <L>.

LOAD FROM DISK OR TAPE (D/T)? .D,
FILF.SPEC? DEMON/CMD <ENTEH>

READY DISK ~ENTEH>

.,

The file "DEMON/CHO" will then be loaded into memory while an asterisk flashes
in the top right corner of the screen. When the load ends, the following will
be displayed:

FIRST ~DRF.SS = 5FOO LAST ADDRESS = 7F68 ENTRY ADDRF.SS = 7ECF

You may then press <BREAK> to return to tha command level.

Loading from tape
When you first type <L> from the command level, DEMON will respond with

"LOAD FROM DISK OR TAPE (D/T)?". Type <T> for tape. If you have a MODEL III,
you will then be asked "Cass?•. Thia prompt is asking tor the baud rate of the
cassette tape you are using. Enter <H> for 1500 baud or <L> for 500 baud {DEMON
will operate at both speeds). You will then be told to "READY CASS" which
simply means to get your cassette player ready by putting in the proper tape
and hitting the PLAY button. When these conditions have been met, hit <ENTER>.

As soon as the load begins, the file name will be displayed and an asterisk
will begin blinking in the upper right corner of the screen. When the load

_ ends, the FIRST, LAST and ENTRY addresses will be displayed on the screen., If
. . an error occurs during loading, an error message will be displayed {see ERROR
.. MESSAGES). Press <BREAK> to return to the command level.

The following example demonstrates the use of this command. It will load
DEMON itself. Because you can't load DEMON on top of itself, the version of
DEMON used to load DEMON from tape must have previously been relocated to upper
memory (see <R> command). In the following example, the text that is not
underlined is supplied by DEMON. The underlined characters are your responses.
From the command level, type the letter <L>.

Demon - Page 13

LOAD FRQM DISK OR TAPE (D/T)? .I
Cass? .L.

READY CASS ~ENTER>

The FILE NAME •DEMON• will appear on the screen as soon as the data begins
loading, and the program will be loaded into memory while an ~sterisk flashes
in the top right corner of the screen. When the load ends, the following will
be displayed :

FIRST ADDRESS = SFOO LAST ADDRESS = 7F68 ENTRY ADDRESS = 7ECF

You may then press <BREAK> to return to the command level.

<W> - Write from memory to disk or tape
This command is used to make recordings in the formats required by the

DEMON monitor command <L>. Tape recordings will also be compatible with the
BASIC "SYSTEM" command, and disk recordings will be in standard command file
format which can be loaded with the DOS command LOAD or rWl as a program from
DOS READY by simply typing the name of the file.

Up to eight separate blocks of memory may be recorded at one time with this
command. The procedure is a little complex, however, so the following
step-by-step instructions should be followed:

1) From the command level, press <W>. DEMON will respond with the message
"WRITE TO DISK OR TAPE (D/T)?". Press <D> for disk or <T> for tape.

2) If you are writing to tape, and if you have a HODEL III, you will be asked
the question "Cass?•. Enter <H> for 1500 baud or <L> for 500 baud.

3) You will then be asked for a "FIRST ADDRESS: n. Ent er the address at which
you want the recording to begin, using the conventions defined under GROUND
RULES. You will then be asked for a "LAST ADDRESS:". Enter the address at
which you want the recording to end. The FIRST ADDRESS and LAST ADDRESS are
included in the recording, and this range is considered a "block".

4) The next message given by DEMON will be the question "MORE?". This means
"Are there more blocks?", or "Do you wish to include another area of memory
in this same recording?". Press <Y> to begin entry of another pair of
addresses and return to step 2. Press <N> if there are no more blocks to be
recorded. If more than one pair of addresses has been entered and you want
to change the last one, <UP ARROW> will erase the last pair of addresses.
<BREAK> will abort and return you to the command level. Because the <L>
command displays the first address used by the first block and the last
address used by the last block, it is helpful to enter multiple blocks in
order or memory location.

5) When <N> is the response to "HORE?", you will be asked for an "ENTRY
ADDRF.sS:". Enter the address at which you want execution of the recording to
begin. If the recording is not really a program and the ENTRY ADDRF.SS has no
meaning, you may hit <ENTER> without specifying an address, and O will be
used as a default.

6) If you are writing to disk you will then be asked for a •FILF.SPEC?". If you
are writing to tape you will be asked for a "FILE NAME?". Enter this name in
the usual format required tor a disk FILESPEC or tape FILE NAME as defined
at the beginning of this section.

Demon - Page 14

7) Respond to "READY DISK" or "READY CASS" by pressing <ENTER> when your disk
or tape is ready to receive the recording. The appropriate device will then
start up and the defined area of memory will be written to it . As the data
is being written, an asterisk will blink in the top right corner of the
screen.

8) If you are writing to disk, and if the FILESPEC you specified already
exists, you will be given the message "REWRITE?". This is to warn you that
you are about to write over an existing file. Press <Y> to continue and
write over the file, or press <N> or <BREAK> to abort and return to the
command level.

9) Unless an error occurs, the message "AGAIN?" will be displayed when the
recording is complete. To make an identical recording on a second disk or on
another tape, press <Y>, and you will be back at step 7 above.

While this procedure is difficuit to describe and sounds complicated, in
p~actice it is quite easy. The following example demonstrates the recording of
a two-block file to disk. The text that is not underlined is supplied by DEMON.
The underlined characters are your responses. To begin, enter the WRITE
function by typing <W> from the command level.

WRITE TO DISK OR TAPE (D/T)? J2.
FIRST ADDRESS: .52..Q.Q. LAST ADDRESS: 53.llil.
MORE? .I.
FIJ!ST ADDRESS: .6.aW2, LAST ADDRESS: ~
HORE? li
ENTRY ADDRESS: .6.aW2,
FILESPEC? TFST2/CMD <ENTER>

READY DISK <ENTER>

<E> - Labelling disassembler
This command is used to generate a source file from a program that is

already in memory. The source file may be written to tape or disk, and will be
in a format that is compatible with Radio Shack's original Editor/Assembler.
There are now many versions of this assembler available, and most of them will
accept the same format of source code. It is, however, impcssible to support
every version of assembler that has been written. More details about the
operation of this complex function are given in the NOTES at the end of this
section.

When you select <E> from the command level, you will be given the prompt
"WRITE SOURCE TO DISK OR TAPE (D/T)?". You should select <D> for disk or <T>
for tape. If you are writing to tape, and if you have a MODEL III, you will
then be asked "Cass?" for the baud rate. Select <H> for 1500 baud or <L> for
500 baud. You will then be asked for a "FIRST ADDRESS:". Enter the address at
which you want the disassembly to begin. You will then be asked for a . "LAST
ADDRESS:"• Enter the address at which you want disassembly to terminate. If you
enter a range that overlaps DEMON, the error message "BAD LIMITS" will be
given. This message will also appear if you enter a range that does not allow
room for .the symbol table (see NOTE 5 below). When these numbers have been
successfully entered, there will be a rapid disassembly of many instructions
visible on the 15th line of the screen while the symbol table is being
constructed.

Demon - Page 15

If you are writing to disk, you will be asked for a "FILE.SPEC?". If you are·
writing to tape, you will be asked for a "FILE NAME?". Enter thi5 item and you
will be given the message "READY DISK" or "READY CASS". You may then press
<ENTER> to record the disassembled instructions. Each instruction appears
briefly on the 15th line of the screen while it is being sent to the disk drive
or cassette recorder.

The following example is typical. The text that is not underlined is
supplied by DEMON. The underlined characters are your responses. Begin by
typing <E> from the command level.

WRITE SOURCE TO DISK OR TAPE? (D/T)? .I
FIRST. ADDRF.sS: ~ LAST ADDRESS: .o..tO.Q.

(The symbol table will now be created and many instructions will appear in
rapid succession on the 15th line of the screen.)

FILE NAME? TEST2
READY CASS

<ENTER>
<ENTER>

When the recording begins, each instruction will appear briefly on the 15th
line of.the screen. When the recording is finished you will return to the
command level. As can be seen from this example, it is possible to generate
source code from the TRS-80 ROMS. This is considered reverse engineering,
however, and is frowned upon by Radio Shack. Programs written that use code
generated in this way may be a violation of copyright law if they are offered
for sale.

NOTES
1) The recording made by this command is complete, but an important step

remains. All of the line numbers in the source file have been set to 00000.
This is easily remedied once the file has been loaded into your assembler by
simply renumbering. Your assembler manual will give you the format for this
command (very likely something like "N100,10").

2) To facilitate relocation of the source, all references to addresses that are
wi.thin the range being disassembled have been changed to labels. These
labels are created by adding an "X" to the left of each number. In addition,
each line referenc~d by one of these labels begins with its own address,
converted to a label the same way.

3) Labels that refer to addresses that are in the middle of an instruction will
lead to the error message "UNDEFINED SYMBOL" when you try to assemble the
file. These will have to be corrected by editing in your assembler. As an
example, let's assume that memory address 7506 is within the range being
disassembled, and that it is referenced by some instruction such as "LD
A,(7506H)". DEMON will convert this address to a label, and the instruction
will become "LD A,(X7506H)". Let's also assume, however, that DEMON finds a
3 byte instruction at address 7505. This will place 7506 in the middle of
that instruction and DEMON will be unable to place a label at address 7506.
"X7506H" will be undefined because it is between instructions in the source.
In this case, you would place the label "X7505H" before the instruction at
address 7505 and change all occurances of label "X7506H" to "X7505H + 1".
The fact that this situation occurred at all, however, may be an indication
that the disassembler is out of sync and something is wrong in that area.

Demon - Page 16

4) The ability to generate source code from existing object code can be very
u.set:ul in making · changes to existing machine language programs. You must
realize, however, that there is no way a program can do this flawlessly. All
it can do is try to disassemble memory and make intelligent sense of it. If
the •target program" was written in a way that does not disassemble
correctly (which ia not only possible but likely), the resultant source file
will be inaccurate. DEMON will try to make sense of the defined area of
memory and will generate a source file for it. While the. source file may not
be perfectly accurate, DEMON was written to accomodate irregularities in a
way that will produce a source file that will reassemble correctly. Once you
make changes to the source file, however, you introduce the possibility of
errors.

One obvious situation of this type is the case in which a program stores
variables or messages in between instructions. DEMON will try to disassemble
these variables and messages into instructions, and will come up with very
peculiar codes indeed. The source file will, however, reassemble correctly.
But if you make changes to this source file and shift the position of these
variables and messages around, problems can arise. It is, therefore, helpful
to survey the area of memory you want to disassemble first t ·o try and
determine which areas are instructions and which areas are variables or
messages. Be forewarned that some judgement will be required in the use of
this function.

5) This function uses a two pass disassembler. 0~ the first pass, the defined
area of memory is disassembled to build a symbol table which will be used on
t.he second pass. This table will occupy memory above the area used by DEMON.
The amount of memory needed for this table depends on the amount of memory
you are disassembling. In fact, it occupies exactly 1/8 the amount of memory
that you are disassembling. This information may be used to determine how
large the symbol table will be. If DEMON is at its original location of 5FOO
to 7FFF, it will use a disk buffer from 8000 to 80FF, and the symbol table
will begin at 8100. To find the last address needed by the symbol table,
divide the number of bytes you are disassembling by 8 and add this number to
8100. Similar calculations can be made if DEMOH has been relocated to other
addresses. DEMON is amart enough, however, to know if the symbol table will
crash into your source area, and will give you a "BAD LIMITS" error if the
first address you enter is not high enough to allow room for the symbol
ta.ble.

Demon - Page 17

2,4 MONITOR RELOCATION COMMANDS <R>, <P>

<H> - Relocate DEMON
This command will allow you to move DEMON nearly anywhere in memory. DEMON

may be relocated by any multiple of 100H in either direction, as often as you
like, except that it won't relocate below 4500H. This limit can be removed,
however (see TECHNICAL INFORMATION). Some common sense is required when using
this command. For example, don't relocate into the area of memory used by the
disk operating system (below 5200H for most systems) and then try to use disk
I/0 commands. You should also avoid trying to relocate above the end of memory
in your machine (7FFF for 16K, BFFF for 32K, and FFFF for 48K).

With DEMON in its original location, the command <R> will clear the screen
and display:

DEMON NOW: 5F00-7FFF-80FF
OK? .

This means that DEMON now occupies memory from SFOO to 7FFF, and it uses memory
between 7FFF and 80FF for disk I/0 commands. The re-entry point to DEMOU at
this location is 5FOO. To relocate, respond to "OK?" by pressing <N> (for
"NO"). You will t~en be given the message "ENTER BYTE:". The byte it is asking
for is the "high order" byte of the new address for DEMON, or the first two
digits of this new address (the last two digits are always "OD"). If you want
DEMON to begin at address DOOO, for example, type DO and press <ENTER>. The
display will then show:

DEMON NOW: 5F00-7FFF-80FF

ENTER BYTE: D.Q.
RESULT: DOOO-FOFF-F1FF
OK?

At this point, nothing has been changed. DEMON is asking you, however, if the
new addresses are acceptable. If you press <BREAK>, you will return to the
command level and DEMON will stay at 5FOO. If you press <Y> (for "YES"), DEMON
will relocate itself to DOOO-FOFF-F1FF and you will return to the command level
(if you don't have 48K of memory, however, DEMON would crash at this address).
If you press <N> (for "NO"), you will be asked to "ENTER BYTE:" again for a new
address to relocate to. <R> destroys DEMON at the original location, so don't
relocate DEMON and then try to jump to the original entry address.

If you intend to use DEMON for stepping through a program using E BREAKS or
the <U> command, it is a good idea to make a note of the re-entry address of
the version of DEMON you are working with. Press <R>, and the first address
displayed 1s the re-entry address. You may also want to create a very small
program which can be saved on disk or tape and will transfer control back to
DEMON if you inadvertently lose control. This program only needs to be a jump
to the entry point of DEMON. The three bytes needed to do this may be stored in
a safe area of memory with the <M> command and then saved on disk or tape with
the <W> command. The "program" to re-enter DEMON at its original location is
"C3 00 5F" (JP SFOO).

Demon - Page 1 ~

<r> - user program relocation
This.command may be used to r~locate machine language programs that are in

memory. You should be warned, however, that there is no fool-proof way to do
this successfully. The same problems and limitations hold true for this
function as did for the <E> command (see NOTE 4 under that command). User
programs are relocated by disassembling them, adjusting CALL and JUMP
addresses, and then moving the code. If DEMON encounters messages or variables
while it is disassembling, it will not know they are messages and variables. It
will try to disassemble them, and if they disassemble to CALLs or JUHPs, they
will be incorrectly modified. There are other conditions that can exist where
addresses are referenced and need to be adjusted, but DEMON will not know it.
For these reasons program relocation is a tricky business that may or may not
be successful. As with the <E> command, some judgement in determining what
areas need to be relocated and what areas do not will make this function more
successful. Forewarned is forearmed.

When you select <P> from the command level, you will be asked for a
"PROGRAM FIRST ADDRESS:". You should enter the starting address of the block of
memory you want to relocate. You will then be asked for a "LAST ADDRESS:".
Enter the last address of the block of memory you want to be relocated. You
will then be asked for a "NEW FIRST ADDRESS:"• Enter the address you want to
move your program to. Finally, you will be aske~ for a "LIMIT ADDRESS:". The
LIMIT ADDRESS will often be the same as the LAST. ADDRESS . All references to
addresses in the range FIRST ADDRESS to LIMIT ADDRESS will be adjusted for the
new location. If the LIMIT ADDRESS is less than the LAST ADDRESS, the memory in
between these addresses will be moved to the new looation, but it will not be
disassembled and no adjustments will be made for CALLs or JUMPs. This allows
you to move tables or messages with the <P> command without changing their
values.

The following example will demonstrate the use of the <P> command. The text
that is not underlined is supplied by DEMON. The underlined characters are your
responses. Let's assume you have a program that resides between 9000 hex and
9400 hex. Let's also assume that you have examined this block of memory _with
the <M> command, and you can see that there are a lot of messages at the end of
this program, and the messages start at address 9300 hex. Finally, you want to
~eve this program from address 9000 hex to address AOOO hex. Type <P> from the

· command level:

PROGRAM FIRST ADDRESS: .!m.0.0_ LAST ADDRESS: .9ll.QQ
NEW FIRST ADDRESS: AQ.QQ.
LIMIT ADDRESS: S3.Q.Q.

After entering the last number1 there will be a slight pause while the
relocation takes place. You will then return to the command level. Because this
command functions by adjusting the program in memory and then moving it, i t
will not work on ROM routines. You can accomplish the same thing, however, by
using the <E> command to generate source code from ROM routines and then Just
changing the origin before assembly.

Demon - Page 19

2.5 MONITOR "JUMP TO STEPPER" COMMANDS <S>. <C>

<S> - Transfer control to stepper
This command will transfer you to the other primary mode in DEMON, which is

the STEP mode. When you press <S> from the command level, you will be given the
following prompt: •s ADDRESS:•. Enter the address at which you want to begin
stepping. You will then be transferred to the STEP MODE. See Part 3 for Stepper
Commands.

<C> - Continue stepping
If you have been·1n the STEP mode and end up back in the MONITOR mode for

some reason, this command will resume stepping at the last instruction
displayed while you were in the STEP mode. One way you might find yourself back
in the MONITOR mode is by hitting <SHIFT BREAK> while in the STEP mode. This
could also occur if the target program failed to return to DEMON by way of an E
BREAK. In the latter case you would have to exit the target program (with RESET
if necessary) and then re-enter DEMON •

. When you select <C> from the command level, the Boreen will clear except
for the letter "C" at the top left corner of the ~creen and the STEP display on
the bottom two lines. You will then be back in the STEP mode. All breaks will
be cleared.

2.6 MONITOR JUMP COMMAND <J>

<J> - Jump to an address
This command is used to jump to any address in memory. From the command

level, type <J>. You will then be asked for a "J ADDRF.SS:". You may enter any
address in ROM or RAM. You should note, however, that address 1 is reserved as
a shorthand jump back to DOS in disk systems. In other words, if you specify 1
as the address to jump to, the jump will actually be to address ~02DH which is
a return to DOS. If you hit <ENTER> without specifying an address, the default
value will be 0000. As soon as the number is entered and <ENTER> or<.> 1s
pressed and released (see NUMBER ENTRY under GROUND RULES) the . Jump will be
made and control will transfer to the address specit'ied or implied. You may
return to the command level at any time before this number is fully entered by
hitting <BREAK>.

2,7 MQNlTOR LINE PRINT COMMAND <SHIFT P>

<SHIFT P> - Line printer control
This command is used to set the logical top of form or to skip a line on

your. line printer. When DEMON is line printing, it uses stored values (see
TECHNICAL INFOJH1ATION) to know how many lines fit on each page and how many
lines to skip between each page. If you advance your printer to a new page and
want to tell DEMON you have done so, this command will reset the line counter.
It will not, however, advance the paper to the top of the next page
automatically.

Demon - Page 20

To use this command, type <SHIFT P> from the command level. You will see
the letter npn on the screen, and DEMON will only accept three commands. One of
these is the letter "T". This tells DEMON to reset its counter for top of form
and return to the command level. The second command DEMON will accept in this
mode is the <SPACE BAR>, which will send a line feed to the line printer and
advance the line counter. You may press the <SPACE BAR> as many times as you
like. Finally, you may also hit <BREAK> to return to the command level.

Demon - Page 21

PART 3; STEPPER COMMANDS

3,l INTRODUCTION

The STEPPER is the second major mode of DEMON. It is entered by way of the
monitor command <S> (see Section 2.5). When the step address is first entered,
the top 14 lines of the screen are cleared. While DEMON is in the STEP mode, it
will not use this part of the screen so you can see what your "target program"
is doing. In fact, DEMON doesn't interfere with your target program's use of
the bottom two lines of the screen either. When DEMON is actually stepping, it
restores the full target program screen. After the step is taken, the bottom
two lines are saved in memory and the stepper display returns. This happens so
quickly that all you will 5ee is a brief flicker. The 5tepper command <T> (see
Section 3.6) can be used for a more leisurely examination of what the target
program is doing on these lines.

~tepper Display Format
The STEP mode display at the bottom of your screen contains much useful

information about the status of the target program and the Z-80 registers. A
sample of this display is shown below. The middle two lines are what you might
see on your screen. The numbers in parentheses above and below these two lines
are references to the various items in the STEP mode display which will be
explained below. These numbers will not appear on your screen.

(1) (2)
· 9509 2A803C LD

? - Z V -
(8) (9)

(3)
HL,(3C80)
(3C80) =2041

(10)

(4)
AF:004JJ
IX:0000

(11)

(5) (6)
BC:4444 DE::3333
IY:0000 SP:7FFC

(12) (13)

(7)
HL:2222

35
(14)

(1) This is the current value of the Program Counter: the address of the
current instruction in the program you are stepping through. In this
example, it is address 9509 hex. This number (and all numbers in the STEP
mode display except the step count) is in hexadecimal notation.

(2) These are the object codes starting at this address. These three bytes form
the current Z-80 instruction. To be very specific, address 9509 contains a
2A, address 950A contains an 80, and address 950B contains a 3c. Taken
together, these three bytes form the instruction "LD HL,(3C80)".

(3) This is the disassembled instruction (in Zilog mnemonics) which is about to
be executed.

(4) This shows the contents of the Z-80 register AF before the current
instruction is executed.

(5) Same as item (4), for the BC register.
(6) Same as item (4), for the DE register.
(7) Same as item (4), for the HL register.
(8) This question mark is the command level prompt in the STEP mode. It means

that DEMON is ready to accept a single character STEP mode command. If the
line printer is enabled (see stepper commands <P> and <SHIFT RIGHT ARROW>)
this prompt becomes an exclamation point instead of a question mark to
remind you that the printer is enabled.

Demon - Page 22

(9) This is the flag register display. The first hyphen holds a place for the
sign flag, which is not set in the example. If the sign flag were set, an S
would appear here. The Z means that the zero flag is set. If the zero flag
were not set, the Z would be replaced with a hyphen. The V means the
parity/overflow flag is set. If this flag were not set, the V would be
replaced with a hyphen. The last hyphen bolds a place for the carry flag.
If the carry flag were set, the hyphen would be replaced with the letter C.
It is beyond the aoope of these instructions to explain the function of the
Z-80 flag register. Refer to a book on assembly . language programming if you
are unfamiliar with the flags or any other part of the Z-80 architecture.

{10) This is what we will call the "bracket operand" display. What it means is
that the number 2041 hex is stored at address 3c80. To be spe.cific, the
contents of memory location 3C80 is 41, and the contents of location 3C81
is 20. This may seem backward, but the Z-80 always stores its two-byte
values backwards. The bracket operand display will be explained more fully
in a moment. The reason it is given in this example is because the contents
or address 3C80 a.re about to be loaded into the HL register pair with the
current instruction.

(11) This shows the contents of the Z-80 register IX before the current
instruction is executed.

(12) Same as (11), for the IY register.
(13) Same as (11) 1 for the SP register.
(111) This is the current step count, which is one 'more than the number ot steps

that have been taken since first entering the STEP mode or resetting the
step count (see command <O>). This number is the only one in the STEP mode
display that is in decimal instead of hexadecimal format.

The "BRACKET OPERAND" Display
Whenever one of the operands of the current instruction is enclosed in

brackets (parentheses), the numerical value of that operand is displayed below
the operands (also in brackets), along with the value stored at that memory
location. The following examples represent the possible configurations of this
display and their meanings:

EXAMPLE 1: If the current instruction is "LD A,(4000)" and the byte at 4000H
is 23H, the bracket operand display will be "(4000):23". A single byte
operation is about to be performed and a single byte value at address 4000 is
shown.
EXAMPLE · 2: In the case of "LD (4000),HL", a two byte transfer is indicated.
The bracket operand display will show the two byte value at location 4000. The
display might be "(4000):2345". The value 2345 is stored at locations 4000 and
4001 BEFORE the instruction is executed.
EXAMPLE 3: In the case of "LD (IY+23),C", if IY: 5000 and the value stored at
location 5023 is 45, the bracket operand display will be "(5023):45". Notice
that DEMON calculates and displays the offset address of "IY+23", as well as
the contents of this location before the instruction is carried out. The value
stored in the C register is also displayed (item (5) in our sample display), so
you can see what the contents of location 5023 will be after this operation.

Demon - Page 23

step Mode commands
There are even more commands available in the STEP mode than there are in

the HOHITOR mode. As in the the MONITOR mode, commands are usually entered with
a single character. Some STEP mode commands (like command <M>) will use the
bottom two lines of the display for their operations. To terminate these
commands, hit the <BREAK> key. This will return you to the STEP mode command
level and restore the STEP mode display we have just described. To exit the
STEP mode entirely and return to the MONITOR mode, hit <SHIFT BREAK>.

Many of the STEP mode commands perform the same functions as their
counterparts in the MONITOR mode. Some STEP mode commands, however, have the
same letter codes as MONITOR commands and yet perform entirely new operations.
For this reason it is a good idea to pay attention to which mode you are in
when selecting commands, but DEMON is quite forgiving. Usually <BREAK> will
abort an incorrect command with no harm done.

The <ENTER> key is used to step DEMON through a program one instruction at
a time, following CALLS, JUMPS, and RETURNS wherever they lead. To speed things
up, can be used except when the displayed instruction is RET, when you may
want to use <ENTER> instead to see where the program returns. For a great
further increase in speed when the displayed instruction is a CALL or RST, use
<U>. These commands will be explained in detail in the following sections.

General Information
When the stepper comes to a bad code, it switches·to disassembling, and

stops if running in one of the continuous modes. This is either an indication
that something is wrong with the target program or that you have gotten out of
sync with the program flow. If you want to continue anyway, press <S> to resume
stepping one byte forward. In some cases this produces the same result as the
Z-80 microprocessor itself, but not when Hor Lare involved.

The stepper keeps interrupts disabled, and ignores El instructions. In the
case of RETI and RETN instructions (return from interrupts), the stepper gives
you the option of continuing with the prompt "GO ON?". If you press <Y>, these
instructions are processed as though they were both RET 1s.

If the stepper encounters a HALT instruction it stops with the message
"HALT" displayed, and will not advance if <ENTER> is pressed. Hit <BREAK> to
continue. (If HALT is encountered while a program is running normally, The
TRS-80 is designed to execute a jump to the reset address 66H.)

Demon - Page 2 4

3,2 STEPPER UTILITY COMMANDS <A>, <H>, <H>, <O>

<A> - Hexadecimal arithmetic CX+Y, x-x, x-x>
This command is almost identical to the monitor mode command <A> which is

described in Section 2.1. In the STEP mode, however, the prompts and display
will appear on the bottom line of the screen. This command may be called from
the main STEP mode command level or from the STEP mode disassemble command (see
command <D> below). To return to the mode you were in before calling this
command, hit <BREAK>.

· <H> - Hexadecimal to decimal and decimal to hexadecimal number conversion
This command is almost identical to the monitor mode command <H> which is

described in Section 2.1. In the STEP mode, however, the prompts and display
will appear on the bottom line of the screen. This command may be called from
the main STEP mode command level or from the STEP mode disassemble command (see
command <D> below). To return to the mode you were in before calling this
command, hit <BREAK>.

<M> - Memory display and edit
This is a two line version ·of the monitor mode command <M> which is

described in Section 2,1, In the STEP mode, however, the di~play will only
occupy the bottom two lines or the screen. Because or this, a "page" is defined
as two lines instead ot 16. This command may be called from the main STEP mode
command level or from the STEP mode disassemble command (see command <D>
below). To return to the mode you were in before calling this command, hit
<BREAK>.

<O> - Quick return to memory edit
This command is identical to the monitor mode command <Q> whcih is

described in Section 2. 1. It will return you to the memory edit function <M>
with the same display as was last used.

1iQ.IE

When STEP mode commands <A>, <H>, <M> or <Q> are used, line printing may be
. ~one as explained for the corresponding monitor commands by hitting <SHIFT
RIGHT ARROW>, If printing isn't needed, just press <BREAK> to return to
whatever you were doing before you called one of these commands (stepping or
Qisassembling). Either way, you will return with the printer disabled (with a
nn prompt instead of a "In prompt). This is true even if the prompt was "J"
with printing enabled before using these commands. This is necessary to avoid
~ultiple printing of the same step display.

Demon - Page 25

3,3 STEPPEB COMMAND <D>

<D> - Disassemble
This command allows inspection of routines anywhere in memory while in the

middle of stepping, without disturbing the step count, the target register
contents, or the target screen. If line printing is .enabled, <D> disassembles
to the printer.

After pressing <D>, "D ADDRESS: n will appear on the bottom line of the
screen. Enter the address at which you want disassembly to begin. When this
number is entered the STEP mode display will disappear except for the first
three items and the command level prompt (see the ' sample display in Section
3.1). To advance the disassembly by one instruction, press <ENTER>. Press <D>
to change the disassembly address. Press <S> to return to stepping at the
original address.

Some of the STEP mode commands are still available while you are in the
disassembly mode. Commands that might interfere with stepping, however, are
disabled. These include <J>, <K>, <U> and <P>. Commands that are active but
should be avoided include , <C>, <E>, <F>, <T>, <V>, and <Z>. For more
details on these commands see their respective sections.

The disassembler ignores <E> breaks, but stops at <I>, <G> and <N> breaks.
The commands that affect these breaks are still active, but any changes that
are made in the disassembly mode wil 1 still be , in effect when you return to
stepping. For more details on the <E>, <I>, and <N> breaks see Section 3.4.

Commands <A>, <H> and <M> are still available in the disassembly mode. When
you exit any of these auxiliary command routines by pressing <BREAK>, the
disassembly display returns.

Disassembly to the line printer
If cl earing the disp1 ay screen of your target program does n I t matter, and

if a series of program instructions are to be disassembled with line printing,
it is easiest to use the MONITOR mode command <SHIFT D> to disassemble to the
printer. To do this, press <SHIFT BREAK> to return to the MONITOR mode, use the
<SHIFT D> command, and return to the STEP mode with the <C> command. If you
must preserve the target program screen display, use the following procedure:

Enter the disassembly mode with stepper command <D> and enter the starting
address. Next, press <SHIFT RIGHT ARROW> to enable line printing. This will
cause the current instruction to be printed on the line printer. It also
enables printing, which you will know by the fact that the command prompt
changes from a question mark to an exclamation point. If this is all you want
to print, press <BREAK>. If you want to print more disassembled instructions,
press <R>. You will then be asked for an "R LAST ADDRESS:". Enter the address
at which you want the disassembly to stop. Printing will begin as soon as you
enter this number. It will continue until the last address is reached or
exceeded unless stopped by an <I>, <G>, or <N> break.

Printing will still be enabled after the printer stops (the coramand prompt
will still be "I"), so press <BREAK> unless you have more to print. This
disables printing and restores the 11 '? 11 prompt at the bottom left of the screen.
To stop the printer at any time, press and hold <BREAK> until the printer
stops.

Demon - Page 26

3,Y BftEAK 1,?'TINQ COMMANDS <E>, <G>, <I>, <N>

Breakpoints are very useful functions in a debugger like DEMON. In general,
a breakpoint is a condition under which program execution or single stepping
will stop. DEMON has four kinds of breakpoints in addition to the "LAST
ADDRF.sS" of the <R> command.

<E> - External break
The <E> break stands for external break. It will only function in RAM. When

you select <E> from the command level, you will be given the following prompt
on the bottom line of the display: "E BREAK ADDRESS:.". Enter the address at
which you want stepping to stop. This address should be the beginning of a
known instruction, and ideally this instruction should be three or four bytes
long. After this address is entered the STEP mode display will return, but a
jump to DEMON will have been inserted in the target program at the break
address. (This is why the E BREAK will only function in RAM. If you try to
enter an E BREAK in ROH you will be given the error message "E ROM".) The three
bytes that originally occupied the E BREAK address are saved within DEMON.

Next, the usual procedure is to jump into the target program by pressing
-<J>, and answer the •J OK?• question by pressing <Y>. At this point, the target
program will resume normal operation at full speed. You will no longer be
running DEMON - your target program will be in tuli control, If you have placed
your E BREAK properly, however, the target program will eventually encounter
it. What it will find, in place cf the original three bytes in the target
program, is a JUMP to the E BREAK entry point in DEMON. DEMON will then resume
control, restore the original three bytes in the target program, and stop in

·the STEP mode command level at this instruction, The Z-80 register display will
show the exact contents each register had at that instant in your target
program. You may continue stepping through the program by pressing <ENTER>.

This kind of break is essential for debugging, but.many things can go
wrong, for example:

1) The target program may never encounter your E BREAK.
2) The target program might alter the codes that cause the jump to DEMON.
3) The target program might enter the middle of the E BREAK jump instruction.
4) The target program might alter DEMON before encountering the E BREAK.

Problems 1 and 3 can usually be avoided by careful placement of the E BREAK.
Problems 2 and 4 are unlikely to occur, but may be avoided by knowing something
about the operation of your target program. After an E BREAK is encountered,
the break address is saved automatically. It will be referred to as the "old
break• in the discussion which follows, The same break may be reset and used
again by way of the <K> command (see Section 3.9) •

. saretY Features
DEMON will remove an existing E BREAK if you use the <E> command to set a

new one, if you return to the monitor, or if you delete all breaks with <C>. In
case you have to reset the computer and re-enter DEMON by jumping to its
starting address, an E BREAK will usually be removed on reentry. In the worst
case, where a break remains that DEMON doesn't expect, you will be given the
error message •BADE BREAK= xxxx• when the target program encounters the
break. The xxxx will be replaced by the address of the unexpected E BREAK. You
will find a jump to DEMON'$ E BREAK entry point at that address instead of the
correct codes.

Demon - Page 27

CAUTION: If you single step into an E BREAK, you will be given the error
message "E-IN". This means that stepping is about to invade DEMON. If this
occurs you will have to hit <BREAK> which will remove the E BREAK and return
you to the MONITOR mode. You may continue stepping with the <C> command.

The following example will demonstrate the u~e of an E BREAK. It will use
the sample program described in Appendix c. You must first either type this
program into memory at address 5500, or have done so earlier and load it now
from tape or disk. Enter the STEP mode with <S>. When asked for the "S
ADDRESS", enter 5500. You will then be in the STEP mode, with the first
instruction of the sample program displayed (CALL 0049H). Next type <E> to
enter an E BREAK, and use 5511 for the E BREAK ADDRESS. Now type <J> to jump
into the sample program. When asked "J OK?", type <Y>.

The screen will go blank and the sample program w111· wait for a keystroke
with the CALL to 0049H. Type the letter "A", and the screen will immediately
fill with this character. The program will then reach address 5511 and
encounter the E BREAK placed there. At this point DEMON will once again regain
control, and the STEP mode display will return to the bottom of the screen. The
next instruction will be a JUMP to 5500 at address 5511, which is where we
placed the E BREAK. While this took only a fraction of a second, the Z-80
actually executed over 20,000 instructions before.we regained control. The E
BREAK is very useful because it allows the target program. to run at full speed
until the break is encountered.

<G> - Break after a certain number or instructions
The G BREAK is another way of stopping the target program during execution •.

It allows you to specify a limit to the number of instructions that will be
executed in the continuous step modes (see STEP mode command <R>}. Because ~t
works in conjunction with the <R> command, the G BREAK won't work if the target
program is running at full speed. Since it stores nothing in memory, however,
it will work as readily in ROM routines as in RAM.

To use the G BREAK, type <G> from the STEP mode command level. You will
then be asked for a "COUNT:". Enter the number of instructions you want to
execute before the G BREAK is activated. This number must be a decimal number,
so you must end it with a decimal point instead of the <ENTER> key. If you have
forgotten how to enter decimal numbers, refer to the explanation under GROUND
RULES at the very beginning of these instructions. Once this number has been
entered, use the <R> command to run the target program under DEMON control.
After the specified number of instructions have been executed, stepping will
stop. The G BREAK, however, is still set. Each time <R> is-pressed it starts a
new G BREAK count, so the G BREAK can be used over and over. To clear a G
BREAK, press <G> and·hit <ENTER>. Any use of the command will also clear
the G BREAK, as will the <C> command.

To demonstrate the G BREAK, we will use the sample program described in
Appendix C. You must first either type this program into memory at address
5500, or have done so earlier and load it now from tape or disk. Enter the STEP
mode with <S>. When asked for the "S ADDRESS", enter 5500. You will then be in
the STEP mode, with the first instruction of the sample program displayed (CALL
00ll9H). Type <U> to execute this ROM call at full speed. 'The screen will go
blank, and you should type the letter "A". The step mode display will return,
and the ASCII value of the letter A (41H) will be in the A register. Hit
<ENTER> three times to take three steps. The step count in the bottom right

Demon - Page 28

corner of the screen should be 5. Next type <G> to enter a G BREAK and enter
"384.• (a decimal number) for the •COUNT:•. You should then be back at the
command level of the STEP mode. Now type <R> to run target DEMON, and when
asked for an •R LAST ADDRESS:", just hit <ENTER>.

You will see the screen begin to fill with the letter "A".• The step mode
display will change very rapidly at the bott.0111 of the screen as each
instruction is executed. When 384 instructions have been executed, the program
will stop. You will find that only the top line of the screen has been filled
with the letter "A". The step counter in the bottom right corner or the screen
will show 389, which is 384 more than the starting count of 5. The G BREAK is
still set. To verify this, press <R> again, and hit·<ENTER> when asked for an
"R LAST ADDRESS". You will see the letter "A" fill the second line of the
screen, and the step counter will stop at 773, which is 384 more than the last
count of 389.

<I> - Internal break
This breakpoint is similar to the E BREAK, except that it works in

conjunction with the <R> and commands to stop when an exact address is
reached in program execution. It does not allow the target program to run at
full speed, but 1 t will work in RAM or ROM. The address specified must be the
beginning of a valid instruction, or DEMON will n~t stop.

To set an I BREAK, type <I> from the STEP mode command level. You will then
be asked for an •1 BREAK ADDRESS:". You may enter any valid hex or decimal
number. You should already know, however, that the address you enter is the
beginning of an instruction you are likely to encounter when running. After
this number is entered, the STEP mode display will return. You may then begin
continuous stepping of your target program with the <R> command, and when
program flow reaches your I BREAK address, stepping ~ill stop.

To demonstrate the I BREAK, we will use the sample program described in .
Appendix C. You must first either type this program into memory at address
5500, or have done so earlier and load it now from tape or disk. Enter the STEP
mode with <S>. When asked for the "S ADDRESS", enter 5500. You will then be in
the STEP mode, with the first instruction of the sample program displayed (CALL
0049H). Type <U> to execute this CALL at full speed. The screen will go blank,
and you should type the letter •A". The step mode display will return and you
will . be at the second instruction of the sample program.

Now type <I> to enter an I BREAK, and enter 5511 for the address. You
should then be back at the command level of the STEP mode. Now type <R> for
continuous stepping, and just hit <ENTER> when asked for an "R LAST ADDRF.SS".
DEMON will immediately begin stepping through the sample program. You will see
the letter "A" begin to fill the screen. When the screen is completely filled
the stepping will stop. The next instruction will be a JUMP to 5500 at address
~511, which is where we placed the I BREAK.

~N> - Break on numbers in given range
This command will allow you·to stop continuous stepping with STEP mode

commands <R> or when a number within a defined range is refenced by one of
the registers. Because it works in conjunction with the <R> and commands,
it does not allow the target program to execute at full speed, but it will work
~qually well in ROM routines as in RAM.

· Demon - Page 29

When you type <N> from the STEP mode command level, you will be asked for
an "N FIRST ADDRESS;"• Enter the lower limit of the range -you want to specify.
You will then be asked for a "LAST ADDRESS:". Enter the upper limit of the
range you are interested in. You will then return to the STEP mode command
level. You may now select command <R> to begin continuous stepping, and if any
register or instruction references a memory address in the defined range,
stepping will stop. To remove an N BREAK, simply enter zero for the two
addresses requested (also see STEP mode command <C>).

To demonstrate the N BREAK, we will use the sample program· described in
Appendix C. You must first either type this program into memory at address
5500, or have done so· earlier' and load it now from tape or disk. Enter the STEP
mode with <S>. When asked tor the "S ADDRESS", enter 5500. You will then be in
the STEP m_ode, with the first instruction of the sample program displayed (CALL
0049H). Type <U> to execute this CALL at full speed. The screen will go blank,
and you should type the letter <A>. The step mode display will then return.

To enter the N BREAK, type <N> and enter 3DOO for the "N FIRST ADDRESS:".
Enter 3D10 for the "LAST ADDRESS:". These numbers define a range of memory that
is in the middle of the video screen. Type <R> to begin continuous stepping,
and hit <ENTER> for "R LAST ADDRESS:". You will then see the screen begin to
fill with the letter "A". If you watch the contents of the HL register, you
will see it approaching the range we have defined. When it reaches 3DOO,
stepping will stop.

As r ·urther example, if the defined range were lf200 to 1'500, stepping woulc
stop if one of the following instructions were reached:

1) LD HL,4350
2) JR 4450
3) LD BC,(A000) (If memory location AOOO contained an address in the defined

range.)

Demon - Page 30

3,5 CLEARING AND LISTING COMMANDS <C>, <L>, <O>

<C> - Clear all breaks
This command is quite simple. It just clears all breakpoints that have been

set. When you type <C>, you will be asked •c OK?". If you type <N>, you will
return to the command level with any breaks still intact. If you type <Y>, all
breaks will be cleared. This includes E BREAK, G BREAK, I BREAK, and N BREAK.
It also clears the value stored as the "old break" which is used by the STEP
mode command <K>.

<L> - List breaks
This command allows you to see what values have been set for the various

breakpoints. After typing <L>, you will be shown a display similar to the
following:

E = 0000, (0000) I= 0000 N = 0000, 0000 G = O.

The first number displayed is the E BREAK address. The second number, in
parentheses, is the old E BREAK address used by the STEP mode command <K>. The
third number is the current I BREAK address. The next two numbers are the first
and last N BREAK addresses. The last number, followed by a decimal point to
indicate that it is a decimal number, is the a · BREAK count. Once the break
display is in place, hit <SHIFT RIOHT ARROW> to print it on the line printer.
Hit <BREAK> to restore the full STEP mode display.

<o> - ffeset step counter
This command very simply resets the step counter in the bottom right corner

of the screen to 1. When you type <O>, you will be asked no OK?". Type <N> and
you will return to the command level with the step counter unaltered. Type <Y>
and you will return to the command level with the step counter set to 1.

3,6 STEPPER DISPLAY COMMANDS <S> AND <T>

<~> - Restore STEP mode display
If the STEP mode command <D> has been used, the bottom two lines will have

the disassembling mode display. To return to the STEP mode display, press <S>.
You will return to the address where stepping was interrupted, and DEMON will
continue just as though <D> had not been used to examine other parts of memory.

<T> - Restore tacget program's screen
Even though you see the STEP mode display on the bottom two lines of the

· screen, DEMON knows what your target program has placed on these lines. In
tact, when DEMON is stepping, control of these two lines is returned to the
target program. The information displayed there is saved by DEMON every time it
displays its own STEP mode display. To see what your target program is doing
with these two lines, hit <T>. The STEP mode display will disappear entirely so
you can see the entire target screen. Hit <BREAK> to return to the STEP mode
4isplay.

Demon - Page 31

3,1 CONTINUOUS STEPPING C0]1MANDS , , <X>

 - Run with cQntinuous stepping
This command is used to begin continuous stepping at the current address.

In this mode it is not necessary to hit <ENTER> for each new step - each step
will be taken automatically until an error occurs, a breakpoint is reached, or
the <BREAK> key is pressed.

To use this command, type <R> trom the STEP mode command level. You will
then be asked for an "R LAST ADDRF.SS: 11 • This address is yet another type of
breakpoint. It allows you to enter an address that is the upper limit to which
you are willing to step. This address, however, does not need to be exact.
Continuous stepping will stop if it reaches an address that is equal to or
greater than the defined LAST ADDRESS. If you do not want to put an upper limit
on continuous stepping, just hit <ENTER> for this address, and a default value
of FFFF will be used.

Continuous stepping will stop if an I BREAK is reached, on the G BREAK
count, and when numbers appear in the N BREAK range. If printing is enabled,
every step will also be sent to the line printer. <R> resets the G BREAK
counter each time it is used (see stepper command <G>).

 - Branch step
This command is very much like the command <R> described above. When

continous stepping is requested with the command, however, no LAST ADDRESS
,is _ asked for. Instead, the command will step continuously until it
encounters a branching instruction that branches. This may sound redundant, but
all branching instructions don't branch. What we mean by a branching
instruction is one that directs program flow to some new address. Examples of
branching instructions are JP, CALL, RST, and RET. An example of a branching
instruction that doesn't branch is "JP NZ,5200" if the "NZ" condition· is not
met.

This method of continuous stepping will also stop at I BREAKs and N BREAKs,
if an error is encountered, or if the <BREAK> key is pressed. If printing is
enabled, the display will also be sent to the line printer for every step.

<v> -. Yarv running speed
This command will allow you to vary the rate at which the commands <R> and

 step. When you type <V>, the command level prompt will change to the letter
"V". You may then enter any valid hexadecimal digit from 1 to F. Enter 1 for
the slowest rate. Enter F (or zero) for the fastest rate. The rate of stepping
approximately doubles with each increment of 1. The slowest rate displays new
instructions about once each second, the fastest rate at about 90 per second.
If line printing is enabled, these rates will be much slower.

Demon - Page 32

3.8 REGISTER EDIT COMMANDS <F>, <Z>

<F> - Flag register edit
Thia command will allow you to directly change the status of the flag bits

in the F register. A flag can be O or 1. If it is 1, or set, the flag's letter
will appear in the STEP mode flag display (see the description of the STEP mode
display in Section 3.1). If the flag is O, or not set, a hyphen will appear in
the flag display instead of the letter. DEMON will allow you to change the SIGN
FLAG (S), the ZERO FLAG (Z), the PARITY/OVERFLOW FLAG (V), and the CAR RY FL AG
(C).

When you enter the command <F>, you will see a display similar to the
following on the bottom line of your screen:

szvc = - z - - FLAG?

You may now select the flag you want to change by typing a single letter (s, z,
P, V, or C). If you typed Z, the display would become:

$ZJC = • Z • C FLAG? Z :

You may now type a zero to reset the zero flag, or a one to set the flag. You
will then be asked again tor a tlag to change. To escape this mode and return
to the command level, press <BREAK>. '

<Z> - z-ao register display and edit
This command allows editing of all the target program's Z-80 registers. It

will also allow you to examine the alternate register set. To set a register
value, first type <Z>. You will then be given the following prompt on the
bottom line of the ecreen: nzao REG= n. You may now enter any double register
and hit <ENTER>. Select the alternate registers by adding an apostrophe a1'ter
the register letters (BC becomes BC'). You will then be shown the current value
of the register. To leave it alone and return to the command level, hit
<BREAK>. To change the current value, enter a new number in either decimal or
hex. After you have entered a new value, the cursor will di~ppear but nothing
else will change on the screen. You may now hit <BREAK> to return to the
command level, or hit <SHIFT RIGHT AHROW> to line print the bottom line of the
displ·ay.

In the following example, the text that is not underlined is supplied by
DEMON. The underlined characters are your responses. Enter the register mode by
typing <Z>:

0063 20FB JR NZ,0060 AF:FF28 BC=OOFF DE=FF00 HL:7F53
zao REG= .Dk. <ENTER> •> 00FF J.1Q.Q. <BREAK>

Demon - Page 33

3,9 JUMP COMMANDS <J>, <K>, <U>

<J> - Jump to the stepping address
This command will cause DEMON to jump to the STEP mode address currently

displayed on the screen. Full control will be transferred to the target
program. Unless an E BREAK has been set first, there will be no return to
DEMON. As a safeguard, the message "J OK?" will appear after this command is
selected. Press <N> or <BREAK> to return to the STEP mode. Press <Y> to jump to
the displayed address and exit DEMON.

<K> - Hestore E BREAK and jump
This command resets the last E BREAK (if it isn't still set), and jumps to

the target program just as the STEP mode command <J> does. After typing <K>
from the command level, you will be asked nK OK?". Press <N> or <BREAK> to
return to the STEP mode. Press <Y> to jump to the displayed address and exit
DEMON.

CAUTION: Because the E BREAK and K BREAK replace codes in your target program,
they should only be placed at three byte instructions. This is especially true
of the K BREAK. If the K BREAK is used at a one byte or two byte instruction,
it is possible to crash DEMON when the <K> function is used. For this reason,
be .sure to place it at the beginning of a three by'te instruction. If this is
not possible, be sure to take at least two steps with the <ENTER> key after an
E BREAK or K BREAK before using the <K> function. This will allow DEMON to step
past the breakpoint and prevent it from crashing itself by running into the
middle of the K BREAK code.

<U> - Jump "Under" CALLS and RST's
This command allows you to execute target program routines·at full program

speed if the current STEP instruction is a CALL or RST in RAM. If the current
instruction is not a CALL or RST, nothing will be done (not even a step). If
the CALL is conditional and the condition is not met, DEMOH will just step to
the next instruction. If the condition is met, DEMON will execute the CALL at
full speed and return. If the CALL or RST is in ROM, the error message "E ROM"
will be displayed, and you will have to press <BREAK> to continue.

The <U> command clears any existing E BREAK, sets an E BREAK at the next
instruction (the return address), and then jumps to the target program just
like stepper command <J>. This command does not affect the old E BREAK address
that is used by the <K> command. The new break is erased as soon as stepping
resumes.

NOTE: Since <U> sets a break, it alters the target program and will not work
properly if the target program uses the next three codes in any way before
returning. Also, DEMON will not regain control if the CALL or RST does not
return.

Demon - Page 31!

3.10 LINE PRINT COMMANDS <P>, <SHIFT RIGHT ARROW>, <SHIFT P>

<P~ - Enable 11ne printing (2 lines>
This commJnd puts DEMON into the line printer mode. When you type <P> from

the STEP mode command level, you will be asked •p OK?". If you don't really
want to print, press <N> or <BREAK>. If you do want to print, press <Y>. This
will cause the bottom two lines of the screen to be i111D1ediately sent to the
line printer. In addition, DEMON will stay in the printer mode (the command
level prompt will be "l" instead of "?") so that both lines will continue to
print on every step.

<SHIFT RIGHT ARBPH> - Enable line printing (line 1s only)
This command functions exactly like stepper command <P> except that no

verification is asked ("POK?" does not display) and only the top line of the
two STEP mode display lines is printed.

NOTE: <SHIFT RIGHT ARROW) and <P> change the"?" prompt at bottom left corner
of the screen to •1• and enable line printing so that every step will line
print automatically. <BREAK> disables line printing, restoring the"?" prompt.
Commands <A>, <H>, <L>, <M>, and <Z> line print independently with <SHIFT RIGHT
ARROW>.

<SHIFT r> - Line printer control
This command functions identically to the monitor mode <SHIFT P> command.

See Section 2. 7.

3,11 TRACING WITH , <U>, AND A LINE PRINTER

As bas already been mentioned, and <U> can be used very effectively
together. Press instead of' <ENTER> except at a RET (where you should press
<ENTER> if you want to follow the program flow) or at a CALL or RST where you
may want to use <U> for full speed program execution. Remember, however, that
<U> can be dangerous if you are in unknown territory. If the program crashes,
reset and reload everything, and repeat the procedure using instead of <U>.

When you are tracing with output to the line printer, there is an
unavoidable speed penalty for printing every line. It may be useful to only
line print each time the stepping stops after is pressed. Do this with <P>
or <SHIFT RIGHT ARROW> followed by <BREAK> (to disable further printing) each
time the display stops. It is also useful to list new breakpoints with <L> and
line print them for reference, and a disassembled listing of the entire program
area may be very helpful.

Demon - Page 35

APPENDIX A: TECHNICAL INFORMATION

In its original location, DEMON loads to 5F00-7F68, but uses memory to 7FFF.
The monitor commands <E>, <L> and <W> use 8000-80FF as a disk I/0 buffer. The
<E> command pl aces 1 ts symbol table above 8100. (The table is 1 / 8 as long as
the program being disassembled.) All of these addresses relocate with DEMON so
their new locations in relocated versions of DEMON will have to be calculated.
Only the high bytes change, however.

The monitor command <M> will edit DEMON itself, and can be used to make useful
changes. The following information refers to DEMON in its original
5F00-7FFF-80FF location:

LINE PRINTER CONTROL
Blank line count: (79A3) = 06 (6 blank lines/page)
Printing line count: (79A4) .: 60 (60 printing lines/page)
Line feed character: (79A6) .: OD
Margin: (79A7) = 00 (Set for O margin)

The MONITOR mode command <J> will automatically jump to address 402DH when 1 is
entered. The address 402DH is stored at 734FH. If you want the <J> command to
jump to some other address when 1 is entered, place that address here (low byte
first).

To remove the colon after line labels in the MONITOR mode command <E> output:
Change the bytes 3E 3A CD 27 76 at location 722F to 00 00 00 00 oo.

DEMON has limits on the address to which program::i may be loaded w.ith the
MONITOR mode command <L>. This limit is to prevent you from crashing your
operating system by loading programs on top of it. This limit may, however, be
changed. The 42H at 788DH prevents loading below 4300H. Change this byte to one
less than the high byte of the lower limit you want to assign. If, for example,
you want the lower limit to be 3COOH, change the byte at 788DH to a 3BH.

The lower limit to which DEMON itself may be relocated is stored at 5FF8H. This
location currently contains 45H which prevents the <R> command from loading
DEMON lower than 4500H.

Tape loads are not allowed into the disk buffer. If you don't have disks, this
is a pointless limit. For tape loads only, it is possible to load into the disk
I/0 buffer by changing the contents of address 789BH from 3CH to oo.

To display periods for codes less than 20H when using the memory edit function
<M> in ASCII mode: Change the byte at 6ECDH from 04 to 00.

TARGET STACK: The target pr-ogram m-a-y move the target stack, but initially the
region from 7FB4 to 7FFF is cleared for easy inspection, and the target stack
pointer is set to 7FFC. "E STACK" will display and stepping will stop if this
stack invades the region from 5FOO to 7FB3 in DEMON.

STORAGE LOCATIONS FOR TARGET REGISTERS WHILE STEPPING
AF' = (7E98) BC' = (7E9A) DE' = (7E9C) HL' = (7E9E)
AF = (7EA0) BC = (7EA2) . DE : (7EA4) HL = (7EA6)
IX = (7EA8) IY = (7EAA) SP = (7EAC) PC • (7ECD)

Demon - Page 36

COMMAND INDEX

MONITOR COMMANDS
(Prompt= "CMD?")

A ARITHt£TIC: 6
B BLOCK MOVE: 10
C CONTINUE STEPPING: 20
D DISASSEMBLE TO SCREEN: 8

<SHIFT UP ARROW>= SCROLL
<SPACE BAR>= ADVANCE 1 LINE
<ENTER>= ADVANCE 1 PAGE

<SHIFT D>: D WITH LINE PRINT; 9
E DISASSEMBLE TO FILE: 15
F FIND BYTE'S: 10

<RIGHT ARROW>= DISPLAY LOCATIONS
<LEFT ARROW>: ERASE BYTE'S

<SHIFT F>: F WITH LINE PRINT: 11
<RIGHT ARROW>= PRINT LOCATIONS

STEPPER COMMANDS
· (Prompt = 11?11 or "l ")

A ARITHMETIC: 25
B . BRANCH STEP: 32
C CLEAR BREAKS: 31
D DISASSEMBLE TO SCREEN: 26

E EXTERNAL BREAK: 27
F FLAG REGISTER EDIT: 33

G
H

J

L
M

NUMBER BASE CONVERSION: 7 H
BREAK ON NUMBER OF STEPS: 28
NUMBER BASE CONVERSION: 25
INTERNAL BREAK: 29 I

JUMP TO MEMORY: 20 J JUMP TO MEMORY: 34
K

LOAD FROM DISK OR TAPE: 12 L
RESET E BREAK AND JUMP: 34
LIST BREAKPOINTS: 31
MEMORY EDIT: 25 MEMORY EDIT: 7 M

<ARROW KEYS>: MOVE CURSOR
<SHIFT UP>= BACK 1 PAGE
<SHIFT DOWN>: FORWARD 1 PAGE
<CLEAR>= TOGGLE HEX/ASCII
<SHIFT LEFT>= TOGGLE ASCII/GRAPHICS
<SHIFT RIGHT>= LINE PRINT

F PROGRAM RELOCATION: 18
<SHIFT P>: L~NE PRINT CONTROL: 20

<SPACE BAR>= LINE PRINT 1 LINE
<T> = SET TOP OF FORM

Q RETURN TO MEMORY EDIT: 8
R RELOCATE DEMON: 18
S STEPPER MODE: 20

W WRITE TO DISK OR TAPE: 14
Z ZERO BLOCK OF MEMORY: 11

<BREAK> RETURNS TO COMMAND LEVEL

N BREAK ON NUMBERS IN A RANGE: 29
0 RE:SET STEP COUNTER TO ONE: 31
P ENABLE LINE PRINTER: 35
<SHIFT P>: LINE PRINT CONTROL: 35

Q · RETURN TO MEMORY EDIT: 25
R RUN BY CONTINUOUS STEPPING: 32
S RESTORE STEPPER DISPLAY: 31
T RE:STORE TARGET DISPLAY: 31
U JU~.P UNDER CALL OR RST: 34
V VARY CONTINUOUS STEP SPEED: 32

Z DISPLAY OR ALTER ZBO REGISTERS: 33

<BREAK> RETURNS TO COMMAND LEVEL
<SHIFT BREAK> RETURNS TO MONITOR MODE
<SHIFT RIGHT ARROW>: LINE PRINT
<ENTER> TAKES OOE STEP

Demon - Page J&O

G<lt16UP X!QEJ

A ARITIDETIC: 6 A llITHJefIC: 25
B JL0CK NOVE: 10 B BRANCH STEP: 32
C CCJfTlNUE STEPPIHGt 20 C CLIAII BIIBAUI 31

mJSSIMBLB TO SCREEN: 26 D DISAS31!HBLE TO SCREEN: t! D
(SHIFT UP AJIROW> • SCJIOLL
<SPACE BAR> • ADVANCE 1 LIRE
<ENTER> • ADVANCE 1 PAO!:

<SHIFT. I>>: D WlTJI LDII PBIIIT': 9
E l)Is.assEHBLE TO FILE: 15 I BXTDtlAL BREAK: 21

Pl.AO REGISTER El>IT: 33 F FIND BYTES: 10 F
<lllt!HT .PROW> • Pl.SPLAY LOCATIONS
<LEFT ARRW> • ERASE BYTES

<SHIFT F>: F WITH LINI PRIRT: 11
<RIGHT ARROW> " PIIIT LOCATIONS

G
H

J

L
M

NllfflER BASE CCIIVIUISlOJI: 7 B
BREAK OI NUfflER OF S'UPS: 28
JWtlUUI BASE CCIIVPSION 1 25
IlltEIIIIAL BREAkf 29 I

JUMP TO 1£HORY: 20 J JUMP TO IEMORI: 34
I[

LOAll FltJI l>ISr OR TAPE: 12 L
USE't E BJIEAI UD JUMP: 34
LIST BIIEAIPOINTS: 3 t
MEMORY EDIT: 25 "'3«>Rt EDIT: 7 M

<ARROW ms> .. HOVE CURSOR
<SHIFT UP> • BACK 1 PAGE
<SHIFT D<llm> • FORWARD 1 PAGE
<CLEAR> 1: TOGGLE HEI/ASCII
<SHIFT LEFT> • TOGGLE ASCII/GRAPHICS
<SHlFT RIGHT>• LIKE PRINT

P PROGRAM RELOCATION: 18.
<.Sl!IFT P>: J.~E PRINT CONTROL: 20

<SfACE BAR> • LINE PRINT 1 LINE
<T> • SET TOP OF FORM

Q RETURN TO MEMORY EDIT: 8
R RELOCATE Dl!MOI: 18
S STEPPER K>DE: 20

W WRITE TO DISK OR TAPE: 14
Z ZERO BLOCl OF t£MORY1 11

<BREAK> RETURNS TO COHHAND LEVEL

11 BREAK OH IUHBERS I)f A RAIQB: 29
0 RESET S'tEP COUNTER TO CIU: 31
P ENABLE LIKE PRINTER: 35
<SHIFT P>: LINE PRINT CONTROL: 35

Q RETURN TO MEMORY IDIT: 25
R IIJN BY COOTIIUOUS STEPPING: 32
S IIES'.l'OR! STEPP!R Dl.SPLAt: 31
T RESTORE TARGET DISPLAY: 31 .
U JUMP UNDER CALL OR llSl': 3.lt
V VARY CONTINUOUS STEP SPEED: 32

Z DISPLAY OR ALTER Z80 REGISTERS: 33

<BREAK> RETURIIS TO COMMAND LEVEL
<SHIFT BREAK> RETUltNS TO K>NITOR MODE
<SHIFT RIGHT BROW> • LINE PRDT
<INTER> TAXES CITE STEP

	Demon_P00_Cover.tif
	Demon_P00_InsideCover.tif
	Demon_P01.tif
	Demon_P02.tif
	Demon_P03.tif
	Demon_P04.tif
	Demon_P05.tif
	Demon_P06.tif
	Demon_P07.tif
	Demon_P08.tif
	Demon_P09.tif
	Demon_P10.tif
	Demon_P11.tif
	Demon_P12.tif
	Demon_P13.tif
	Demon_P14.tif
	Demon_P15.tif
	Demon_P16.tif
	Demon_P17.tif
	Demon_P18.tif
	Demon_P19.tif
	Demon_P20.tif
	Demon_P21.tif
	Demon_P22.tif
	Demon_P23.tif
	Demon_P24.tif
	Demon_P25.tif
	Demon_P26.tif
	Demon_P27.tif
	Demon_P28.tif
	Demon_P29.tif
	Demon_P30.tif
	Demon_P31.tif
	Demon_P32.tif
	Demon_P33.tif
	Demon_P34.tif
	Demon_P35.tif
	Demon_P36.tif
	Demon_P40.tif
	Demon_P40_secondCopy.tif

